In mathematics, a group is a set equipped with a binary operation that combines any two elements to form a third element in such a way that four conditions called group axioms are satisfied, namely closureassociativityidentity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation, but groups are encountered in numerous areas within and outside mathematics, and help focusing on essential structural aspects, by detaching them from the concrete nature of the subject of the study.[1][2] Groups share a fundamental kinship with the notion of symmetry. For example, a symmetry group encodes symmetry features of a geometrical object: the group consists of the set of transformations that leave the object unchanged and the operation of combining two such transformations by performing one after the other. Lie groups are the symmetry groups used in the Standard Model of particle physicsPoincaré groups, which are also Lie groups, can express the physical symmetry underlying special relativity; and point groups are used to help understand symmetry phenomena in molecular chemistry. The concept of a group arose from the study of polynomial equations, starting with Évariste Galois in the 1830s. After contributions from other fields such as number theory and geometry, the group notion was generalized and firmly established around 1870. Modern group theory—an active mathematical discipline—studies groups in their own right.a[›] To explore groups, mathematicians have devised various notions to break groups into smaller, better-understandable pieces, such as subgroupsquotient groups and simple groups. In addition to their abstract properties, group theorists also study the different ways in which a group can be expressed concretely, both from a point of view of representation theory (that is, through the representations of the group) and of computational group theory. A theory has been developed for finite groups, which culminated with the classification of finite simple groups, completed in 2004.aa[›] Since the mid-1980s, geometric group theory, which studies finitely generated groups as geometric objects, has become an active area in group theory.  


The modern concept of an abstract group developed out of several fields of mathematics.[3][4][5] The original motivation for group theory was the quest for solutions of polynomial equations of degree higher than 4. The 19th-century French mathematician Évariste Galois, extending prior work of Paolo Ruffini and Joseph-Louis Lagrange, gave a criterion for the solvability of a particular polynomial equation in terms of the symmetry group of its roots (solutions). The elements of such a Galois group correspond to certain permutations of the roots. At first, Galois’ ideas were rejected by his contemporaries, and published only posthumously.[6][7] More general permutation groups were investigated in particular by Augustin Louis CauchyArthur Cayley‘s On the theory of groups, as depending on the symbolic equation θn = 1 (1854) gives the first abstract definition of a finite group.[8] Geometry was a second field in which groups were used systematically, especially symmetry groups as part of Felix Klein‘s 1872 Erlangen program.[9] After novel geometries such as hyperbolic and projective geometry had emerged, Klein used group theory to organize them in a more coherent way. Further advancing these ideas, Sophus Lie founded the study of Lie groups in 1884.[10] The third field contributing to group theory was number theory. Certain abelian group structures had been used implicitly in Carl Friedrich Gauss‘ number-theoretical work Disquisitiones Arithmeticae (1798), and more explicitly by Leopold Kronecker.[11] In 1847, Ernst Kummer made early attempts to prove Fermat’s Last Theorem by developing groups describing factorization into prime numbers.[12] The convergence of these various sources into a uniform theory of groups started with Camille Jordan‘s Traité des substitutions et des équations algébriques (1870).[13] Walther von Dyck (1882) introduced the idea of specifying a group by means of generators and relations, and was also the first to give an axiomatic definition of an “abstract group”, in the terminology of the time.[14] As of the 20th century, groups gained wide recognition by the pioneering work of Ferdinand Georg Frobenius and William Burnside, who worked on representation theory of finite groups, Richard Brauer‘s modular representation theory and Issai Schur‘s papers.[15] The theory of Lie groups, and more generally locally compact groups was studied by Hermann WeylÉlie Cartan and many others.[16] Its algebraic counterpart, the theory of algebraic groups, was first shaped by Claude Chevalley (from the late 1930s) and later by the work of Armand Borel and Jacques Tits.[17] The University of Chicago‘s 1960–61 Group Theory Year brought together group theorists such as Daniel GorensteinJohn G. Thompson and Walter Feit, laying the foundation of a collaboration that, with input from numerous other mathematicians, led to the classification of finite simple groups, with the final step taken by Aschbacher and Smith in 2004. This project exceeded previous mathematical endeavours by its sheer size, in both length of proof and number of researchers. Research is ongoing to simplify the proof of this classification.[18] These days, group theory is still a highly active mathematical branch, impacting many other fields.a[›]

Benvenuto in WordPress. Questo è il tuo primo articolo. Modificalo o cancellalo e quindi inizia a scrivere!

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent posuere sapien ut pretium varius. Curabitur fermentum diam et dui varius euismod. Phasellus faucibus, nisl ac semper interdum, lorem ante cursus turpis, et feugiat lacus ante vitae ligula. Nulla sodales odio vitae faucibus tristique. Ut lobortis turpis quis mauris eleifend sagittis. Interdum et malesuada fames ac ante ipsum primis in faucibus. Maecenas et commodo massa. Cras ut risus nisl. Pellentesque sagittis ligula feugiat, posuere arcu a, pulvinar justo. Proin posuere neque tempor risus volutpat, vel posuere massa hendrerit. Sed orci arcu, facilisis quis est sagittis, lacinia sodales erat.

Aliquam augue magna, suscipit ut aliquet quis, iaculis ac leo. Donec a felis neque. Etiam eu fermentum sem. Morbi vehicula ex quis felis ornare fringilla et at tellus. Sed rutrum arcu sit amet nunc vulputate, ut finibus nisi vehicula. Mauris molestie nibh vestibulum, ullamcorper sem ac, lacinia ex. Fusce porttitor fermentum ipsum, at dignissim urna vehicula a. Maecenas eu rutrum dui.

Nam eu aliquam ante. Aenean maximus, leo pharetra euismod faucibus, nunc sapien convallis nulla, vel pellentesque risus urna at diam. Cras viverra purus at elit laoreet efficitur sed nec eros. Donec at ipsum arcu. Aliquam turpis orci, facilisis sed ante a, blandit tempor mauris. Duis vel lectus placerat, rhoncus tortor in, gravida ante. Ut eros nulla, ultricies quis urna quis, lobortis gravida tellus. Aenean quis pellentesque ante. Etiam aliquam odio aliquet, lacinia arcu vitae, semper turpis. Ut euismod maximus erat, ut tincidunt risus vestibulum porttitor.

Nullam tincidunt fringilla dui vitae tincidunt. Praesent accumsan ligula arcu, nec tempus odio bibendum ac. Aenean vehicula tempor metus vitae sodales. Sed pharetra vestibulum tristique. Nunc ut sollicitudin massa, id bibendum enim. Nullam volutpat dolor massa, id commodo diam luctus eget. Aenean ante erat, rutrum ut convallis vitae, hendrerit nec lectus. Nullam rhoncus interdum orci at egestas. Mauris facilisis pretium nunc nec dapibus.

Mauris consectetur odio et tempus congue. Vestibulum vitae libero lorem. Suspendisse vel odio sit amet neque porta tincidunt. Phasellus ut dui non tellus gravida fringilla. Donec efficitur arcu maximus lectus ultricies, in condimentum ipsum auctor. Ut feugiat leo a diam semper pulvinar. Vestibulum non nibh nisl. Donec quis justo leo. Sed semper semper nisl, eget pretium lectus tempor et. Phasellus fringilla lorem ac tellus tempor bibendum.